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Abstract In this paper we present two computational
strategies to simulate resonance Raman spectra of sol-
vated molecules within the framework of the polarizable
continuum model (PCM). These two strategies refer to
two different theoretical approaches to the RR spectra,
namely the transform theory and the short-time dynam-
ics. The first is based on the explicit detemination of
the mimimum geometries of ground and electronically
excited states, whereas the second only needs to know
the Franck–Condon region of the excited state poten-
tial energy surface. In both strategies we have applied
the recent advances achieved in the QM description of
excited state properties and geometries of solvated mol-
ecules. In particular, linear response approaches such
as CIS and TDDFT, and their extensions to analyt-
ical gradients, are here used to evaluate the quanti-
ties required to simulate resonance Raman spectra. The
methods have been applied to the study of solvent effects
on RRS of julolidine malononitrile (JM). The good
agreement found between the calculated and experi-
mental RR spectra seems to confirm the reliability of the
computational strategies based on the PCM description.

1 Introduction

Raman scattering is the result of the coupling between
the radiation and the components of the molecular
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polarizability which are modulated by molecular
vibration. In Raman scattering measurements where the
wavelength of the radiation is close to an electronic exci-
tation of the molecule, the intensity of the signal can be
enhanced by a factor of up to 104–106. This process is
referred to as resonance Raman scattering (RRS) [1].

One of the main interests in RRS is that this spec-
troscopic technique yields information about electroni-
cally excited state properties and structure. There are in
fact very few experimental measurements from which
one can obtain excited state data, by contrast there
have been important recent advances in QM theories to
describe excited state geometries and properties. It thus
becomes very useful to compare the results obtained
with such new techniques with those extracted from
RRS.

Along this line, theoretical and computational
approaches have to become more and more realistic
so to include all the most important effects which can
determine the nature and the properties of the vari-
ous electronically excited states. Among these effects, a
very important role is obviously played by the solvent.
It is in fact well known that polar solvents can largely
affect the electronic nature of excited states, for exam-
ple amplifying their charge-transfer character. These
strong electronic deformations in the solvated mole-
cules are obviously accompanied by structural defor-
mations which can lead to very different relaxed excited
states with respect to the same systems in gas-phase.
For all these reasons it is of large interest to develop
QM models which can determine properties and struc-
tures of molecular excited states taking into account
the possible effects of the solvent. Among the avail-
able approaches, one of the most suited to be applied to
this kind of study is represented by continuum solvation
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models. These latter in fact can be (and they have been)
extended to almost all the main QM description used
to describe excited states. In particular, the polarizable
continuum model (PCM) developed in Pisa by Tomasi
et al. [2–5] has shown to give reliable descriptions of
different phenomena involving electronically excited
states.

The extension of QM continuum models to excited
states has been discussed in various papers (see, e.g.
reviews such as [6,7] for an extended literature). The
main specificity is related to the fact that the electronic
excitation is a process involving not only the solute
but the entire solute–solvent system. As a consequence,
the definition of the excited states of molecular sol-
utes requires also the characterization of the solvent
degrees of freedom. The difference of the characteris-
tic time scale of the electronic degrees of freedom of
the solute and the composite degrees of freedom of
the solvent may lead to different excited state regimes,
with two extreme situations, namely the “nonequilibri-
um regime” in which the slow degrees of freedom of the
solvent are not equilibrated with the excited state elec-
tronic redistribution upon vertical excitation processes,
and the “equilibrium regime” in which the solvent is
allowed to equilibrate i.e., reorganizes all its degrees of
freedom including the slow ones. In polar solvent, the
different regimes may largely influence the properties of
the solute excited states, and thus computational algo-
rithm should allow for the use of both of them.

Recently, a further important specificity of the exten-
sion of QM continuum models to describe excited states
has been rigorously analyzed both from a formal and
a numerical point of view [8,9]. In such an analysis,
it has been shown that the application of these mod-
els to either linear response (random phase approxi-
mation, RPA, configuration interaction-singles CIS, and
time-dependent density functional theory,TDDFT) or
state specific approaches (complete active space self-
consisting field, CASSCF, configuration interaction CI,
etc.) may lead to differences due to an intrinsic nonlin-
ear character of the solvent response operators used in
continuum models. The state specific (SS) approaches,
which are based on the explicit calculation of the excited
state wave function, properly take into account the var-
iation of the solute–solvent interaction accompanying
the change of the electronic density during an electronic
excitation, while the linear response methods introduce
only effects related to the corresponding transition den-
sity. In order to reduce these intrinsic differences,
recently we have presented a method in which a SS
correction is introduced in LR approaches [10]. This
method is based on the use of the relaxed density which
can be obtained in LR approaches thanks to their exten-

sion to analytical gradients now available not only within
the CIS version but also within TDDFT. In the present
paper, these two techniques and their gradient exten-
sions [11,12] will be applied to model RRS of solvated
systems.

In particular, two different theoretical approaches
will be presented to describe RRS. The first is the trans-
form theory (TT) approach by Peticolas and Rush [13]
which allows the calculation of relative resonance
Raman intensities from Franck–Condon (FC) type scat-
tering based on the optical absorption spectrum of a par-
ticular compound and the differences in the equilibrium
structures between the ground and the excited state in
resonance. The second, alternative, approach is based on
the formalism developed by Lee et al. [14,15] by recast-
ing the original Kramers, Heisenberg, and Dirac (KHD)
formalism [16,17], into a time-dependent formalism in
terms of wave-packet dynamics.

After a short introduction into the RRS theories in
Sect. 2 to clearly describe the specificities introduced in
both TT and STD by the presence of the solvent, results
are presented for julolidine malononitrile in Sect. 3. We
will focus on density-functional theory (DFT) meth-
ods for the calculation of excited-state energies and
structures, in comparison to the Hartree–Fock (HF)/CIS
approach. A discussion of the results and a conclusion
are given in Sect. 4.

2 Theory for resonance Raman in solvated systems

In this section we first review the fundamental aspects
of TT and STD approaches and then we describe which
specific aspects are involved when a PCM solvent is
introduced.

2.1 Transform theory

The transform theory of resonance Raman intensities is
based on the optical theorem, which connects the optical
absorption with the imaginary part of the polarizability
tensor components, and on the Kramers–Kronig rela-
tions between the real and the imaginary part of the
polarizability tensor components.

Five are the “standard assumptions” made in the TT
approach [13]: (1) the Born–Oppenheimer approxima-
tion is valid, (2) only one excited electronic state is
important (from now on indicated with r), (3) ground-
and excited-state potential energy surfaces are harmonic,
(4) non-Condon effects are negligible, i.e., only
FC-type scattering is important, (5) excited and ground-
state normal coordinates differ only in their equilibrium
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positions, so that Duschinsky rotations are not impor-
tant and the frequencies for ground and excited-state
vibrations are the same (“independent mode, displaced
harmonic oscillator model", IMDHO [18])

Within these approximations, the vibrational Raman-
scattering cross section from an initial vibrational state i
to a final state f of the electronic ground state is propor-
tional to the square of the polarizability tensor whose
component ρσ is given by

α
fi
ρσ (ω0) =

Me
0r,ρMe

0r,σ

h̄

∑

k

〈
νf |νk〉 〈νi |νk〉
ωki − ω0 − i�r

(1)

where the damping constant �r is the total homoge-
neous linewidth (halfwidth at half-maximum) from both
pure dephasing and lifetime contributions, ω0 denotes
the laser excitation frequency and

ωki = ωr0+
3N−6∑

j=1

vj�j

where �j is the harmonic vibrational frequency corre-
sponding to normal mode j, h̄ωr0 is the energy difference
between the v = 0 levels of the electronic ground and
excited state r.

In Eq. (1) the summation over intermediate states has
been restricted to vibrational levels of a single resonant
electronic state (the state r), and the Condon approxi-
mation has been imposed such that the dipole moment
matrix elements have been separated into products of a
purely electronic transition moment (Me

0r) and a vibra-
tional overlap.

One important point in the transform-theory
approach is that, for the “independent mode, displaced
harmonic oscillator model,” the FC-type integrals are
known analytically in terms of the normal-mode dimen-
sionless displacements �j of the excited state equilib-
rium structure. As a result, the relative RRS intensities
can be approximated as

i1←0
j /i1←0

k � �2
j /�

2
k (2)

where we have neglected the frequency-dependent pre-
factor which may be taken to be constant in a good
approximation [19]. We note that these normal coordi-
nate displacements correspond to dimensionless normal
coordinates qj, and thus

�j =
3N−6∑

k

L−1
jk �Rk (3)

where L−1
jk are the elements of the L inverse matrix

determined from the solution of the ground state
normal-mode eigenvalue problem [20], and �Rk are the

changes in the internal coordinates upon excitation of
the molecule into the relevant excited state.

The expression (2) states that relative RRS intensi-
ties are completely determined once ground and excited
state minimum geometries are known together with the
ground state vibrational normal modes.

2.2 TD theory: the short time dynamics approximation

An alternative, time-dependent formalism for the calcu-
lation of resonance Raman intensities has been devel-
oped by Lee et al. [14,15] by recasting the original
formalism developed by Kramers, Heisenberg, and
Dirac into a time-dependent formalism in terms of nuclei
wave-packet dynamics. Although this time-dependent
formulation is similar to the transform theory, it dif-
fers in the interpretation of Raman scattering in terms
of wave packets and the semiclassical propagation of
them. This approach showed that many features of both
resonant and nonresonant Raman scattering could be
understood in terms of short-time dynamics.

Within the time-dependent theory, the polarizability
tensor becomes

αρσ =
Me

0r,ρMe
0r,σ

h̄

∞∫

0

dt 〈f |i(t)〉 exp
[
i (ωL+ωi− ωr0) t−g(t)

]

(4)

where ωi is the vibrational frequency (above the zero
point) of the |i〉 vibrational level of the ground electronic
state, and

|i(t)〉 = exp (−iHvibt/h̄) |i〉 (5)

Hvib being the Hamiltonian for vibrational motion in
excited state. The quantity 〈f |i(t)〉 is a time-dependent
vibrational overlap between the final vibrational state
and the initial state propagated for time t by the excited
state vibrational Hamiltonian and g(t) is a lineshape
function. It is interesting to note that in this time-domain
formulation, contrary to the frequency dependent
expression, it is much easier to incorporate possible
solvent effects in the dephasing. This can be obtained
for example introducing a Brownian oscillator approach
and thus at the end the lineshape function g(t) will incor-
porate both lifetime decay and solvent-induced pure
dephasing [21].

The time dependence of |i(t)〉 represents the motion
of the nuclei after the potential energy function is instan-
taneously (on the time scale of vibrational motion)
switched from that of the ground electronic state to that
of the excited state. The intensity of each Raman transi-
tion depends on the overlap of |i(t)〉with a different final
state. In general, those modes that undergo the largest
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excited-state geometry changes will exhibit the high-
est intensities. In polyatomic molecules, each overlap
〈f |i(t)〉 involves all vibrational coordinates.

Equation (4) implies that the time scale of the dynam-
ics that contributes to the resonance Raman intensity
should extend for as long as the damping factor is non-
negligible. In practice, though, in most fairly large mol-
ecules the intensities are determined almost entirely by
the dynamics within less than a vibrational period (typi-
cally only 10–20 fs or so). In this “short-time dynamics”
(STD) limit, the relative RRS intensities can be approx-
imated as

i1←0
j /i1←0

k =
(

∂Ex
el

∂qj

)2 / (
∂Ex

el

∂qk

)2

(6)

where Ex
el is the electronic excitation energy, qj and qk

are the normal coordinates of modes j and k, respectively
and the derivatives are computed at the ground-state
equilibrium position. This equation means that when
only short-time dynamics is important the relative inten-
sities are given by the gradient of the Franck–Condon
vertical excited-state surface with respect to the normal
coordinates. In this case, no explicit knowledge of the
excited state minimum structure is required.

Such an expression can be related by the TT expres-
sion (2) by defining the partial derivative of the excited-
state electronic energy with respect to a ground-state
normal mode at the ground-state equilibrium position
in the IMDHO model [1],
(

∂Ex
el

∂qj

)

gs
= −�j�j (7)

TT and STD methods combined can be used to check the
internal consistency of the approximations made with
respect to the excited-state potential energy surface [22].

2.3 PCM for TT and STD descriptions

In the previous sections we have reviewed the theoret-
ical expressions for the resonance Raman intensities in
the TT and STD approaches when a single excited elec-
tronic state contributes to the optical response. These
expressions when applied to solvated systems should
include, in principle, the changes in nuclear equilibrium
geometry (reorganization) along all solute vibrational
modes plus a collective solvation coordinate, and also
allow for the possibility of inhomogeneous broadening
of the electronic transition and broadening due to the
finite lifetime of the excited electronic state.

In the present study, however, the aspect of the broad-
ening of the RR band will not be considered and thus the
analysis of the solvent effects will be applied to the final

approximate expressions of the TT and STD theories
(Eqs. (2) and (6), respectively). In doing this, we cer-
tainly cannot account for the presence of the solvent
on the bandshape but we include solvent effects on the
position and the shape of the ground and electronic state
potential energy surfaces. These effects are surely the
dominant ones for a proper description of the RRS of
solvated systems, especially when these latter are (like
in the present paper) conjugated push–pull systems in
which the fractional charge-transfer character, or degree
of bond-order alternation, is tunable by changing the
polarity of the solvent.

The main effects of the solvent on RR spectra (posi-
tion of the peaks and their intensities) can thus be
ascribed to two different origins: one due to the sol-
vent-induced changes in the geometry of both ground
and excited states and the other due to the variations
induced in the electronic distribution of both states.

In order to take into account these two effects, the QM
description of the solute has to account for the solvent at
each step, namely the determination of the ground state
minimum geometry and of the corresponding vibra-
tional normal modes and frequencies, and the determi-
nation of the vertical excited state (in the STD scheme)
or the relaxed excited state (in the TT scheme).

As far as concerns ground state geometry and vibra-
tional modes and frequencies, PCM has been already
successfully applied to describe IR [23] and normal
Raman [24] spectra of solvated systems. Here, we thus
do not repeat what already presented in those studies
but we just recall that the interested reader can find
all the details of the implementation of the PCM the-
ory within those spectroscopies in the cited paper or in
recent reviews such as [6,25].

It is instead of interest to focus on the modelization of
the PCM solvent effects on excited states. The applica-
tion of PCM to TT and STD theories in fact involves the
determination of portions of the PES for the solvated
excited state.

As briefly discussed in Sect. 1, the new specific aspect
introduced in the modelization of excited state forma-
tion and relaxation in solution is the dynamics of the sol-
vent. In particular, in fast processes, such as electronic
excitations, electron transfers or ionizations, the time-
scale of the change in the charge density of the solute is
usually much smaller than the time-scale in which a polar
solvent fully relaxes to reach a new equilibrium state.
During this relaxation, the solvent nuclear and molec-
ular motions act as inertia on the solvation response
and a nonequilibrium regime is established. Due to the
mutual solute–solvent polarization, the new equilibrium
is reached through changes of both solute and solvent,
and an accurate description of the reorganization path
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should consider the evolution of their interaction and,
possibly, the solute geometry relaxation.

If now apply this analysis to the TT and STD schemes
we obtain that, when relaxed excited states are consid-
ered as in TT, a solvation equilibrated to the relaxed
state should be used while, when a FC portion of the
PES has to be explored as in STD, nonequilibrium sol-
vation is to be preferred. In this latter case, a parti-
tion of the PCM effect in two separate components is
done, one related to the dynamic (or fast) electronic
response of the solvent, and the other to the slower, or
inertial, response connected to nuclear and/or molecular
motions inside the solvent [26–28]. According to what
was said before, the dynamic component will depend
on the instantaneous charge distribution of the solute
and on the optical dielectric constant. The inertial com-
ponent, on the contrary, will still depend on the solute
charge distribution of the initial (ground) state.

The theory of the extension of PCM to excited states
and their derivative approaches has been already pre-
sented both at CIS [11] and TDDFT level [12] and suc-
cessfully applied to different organic molecules. Here,
we only recall that for both methods, the energy func-
tional to differentiate is the free energy G defined as

G = E− 1
2

〈



∣∣∣VPCM
∣∣∣ 


〉
(8)

where E is the eigenvalue of the effective Hamiltonian
(H0 + VPCM) including the PCM operator VPCM. This
solvent induced term represents the electrostatic inter-
action between the solvent and the solute’s nuclei and
electrons. In the computational practice a boundary-
element method BEM is applied by partitioning the cav-
ity surface into discrete elements, called tesserae, and by
representing the solvent response with a collection of
apparent point charges, each one placed at the center of
a tessera. The detailed expression of the linear system
of equations defining such charges depends on the spe-
cific version of the PCM method being used and it has
been previously published (see Ref. [6] for a complete
survey). Here we simply recall that such equations are
determined by the form and shape of the cavity, by the
details of the discretization of the surface and by the
solvent permittivity ε. By tuning the value of ε we can
describe the changes in the solvation of the excited state
when passing from the Franck–Condon region of the sol-
vent coordinate i.e., the nonequilibrium to a completely
relaxed solvent. This is done by changing the value of
ε used to compute the PCM charges from the optical
value ε∞ namely, the square of the refractive index to
the static bulk value ε0. Effects of these changes can be
significant for polar solvent for which ε∞ � ε0.

The QM treatment of the PCM operator VPCM is
delicate, as it depends on the solute total density and
thus it induces a nonlinear character in the solute
Schrödinger equation. This nonlinearity for ground elec-
tronic states is automatically solved by using standard
self-consistent field iterative approaches developed for
isolated systems. Passing to excited states, instead, two
different solvent-specific approaches have been devel-
oped: (i) a general scheme in which the excited state
problem described using state specific (SS) approaches
(complete active space self-consisting field CASSCF ,
CI, etc.) is iteratively solved in the presence of the corre-
sponding solvent response and (ii) a simplified scheme
in which, following a linear response (LR) formalism,
the solvent response is determined by transition densi-
ties instead of state densities. Recently, we have shown
the intrinsic differences between the two schemes [8,9]
and we have formulated a third hybrid scheme in which
the computationally efficiency of LR approaches is com-
bined to the more satisfactory description of the solvent
response of SS approaches [10]. This third scheme (also
indicated as corrected LR, cLR) introduces a SS cor-
rection in the original LR description using the PCM
charges produced by the relaxed density of each excited
state which can be obtained in LR approaches thanks
to their extension to analytical gradients. This corrected
LR approach reduces the differences with respect to
a real SS scheme and it allows for a more satisfactory
description of the variation of the solute–solvent interac-
tion accompanying the change of the electronic density
during an electronic excitation.

In the following application to the simulation of RR
spectra of a solvated push–pull molecule we will use both
an equilibrium PCM-TT and a nonequilibrium PCM-
STD description. In the latter case, both the standard
LR and the corrected LR method will be tested.

3 Resonance Raman of julolidine malononitrile

In this section we report the application of the meth-
odologies for the study of RRS in solution reported
in the previous section to the evaluation of a relevant
portion of the resonance Raman (RR) spectrum of julo-
lidine malononitrile (JM) in solvents of different polar-
ity. The experimental investigation of solvent effects
on RR spectra of JM has been reported previously in
Refs. [29,30].

JM belongs to the class of conjugated organic mol-
ecules of interest for second-order nonlinear optical
applications, due to the fact that it has reported to have
low-lying electronic transitions with a high degree of
intramolecular charge-transfer (CT) character and
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Fig. 1 Resonance Raman spectra of JM in different solvents after
subtraction of fluorescence backgrounds. Asterisks label solvent
bands. Arrows mark a vibration whose intensity is particularly
solvent dependent. The spectra are taken from Ref. [30]

consequently is sensitive to changes in the local solvent
environment.

As it has been reported previously in the literature
[29,30] experimental RR spectra of JM exhibit a marked
dependence upon the solvation environment (see Fig. 1).

In the experimental RR spectrum, the most strongly
solvent-dependent vibration seems to be that at
1612 cm−1. Such a vibration involves the stretching of the
bonds defining the phenyl, which are aromatic in the neu-
tral form but can be considered double bonds in the
zwitterionic form. A strong resonance Raman intensity
is experimentally evidenced for this band, suggesting
large geometry change in this mode upon electronic
excitation.

In the following we shall test the predictive power of
PCM in reproducing the intensity pattern of the RR
lines in the range 1550–1620 cm−1 by exploiting the
two different methodologies described in the previous
section and assuming that CT lowest energy strongly
allowed transition is the only state determining the RR
spectrum [31].

3.1 Computational details

The calculations of ground state energies, geometries,
vibrational frequencies and normal modes were per-
formed by exploiting Hartree–Fock (HF) and density
functional theory (DFT) with the B3LYP hybrid func-
tional. The basis set chosen was 6-311G(d,p), e.g. the
same used in the previous study by Myers et al. [29,30].

For the calculation of excited states CIS and TDDFT
(using the same basis set) were applied to the calcu-
lation of excitation energies and geometries. Solvent
effects were accounted for by exploiting the integral
equation formalism (IEF) [4,5] version of the PCM as
implemented in a development version of the Gaussian
code [32].

Calculations of excitation energies were performed
by using both the linear response (LR) and the “cor-
rected LR” schemes (see Sect. 2.3). In all the calcula-
tions in solution, a molecule-shaped cavity was used,
made of interlocking spheres centered on heavy atoms
and using for the radii of the spheres the default values
implemented in Gaussian.

3.2 Ground and excited state geometries

Before presenting results about the RRS intensities we
analyze ground and CT excited state geometries.

The variation in selected bond lengths (see Fig. 2 for
their labeling) for JM ground state passing from cyclo-
hexane to acetonitrile is reported in Fig. 3, where HF
and DFT/B3LYP are compared.

Fig. 2 Scheme of JM structure with labelling of selected distances

-0.012

-0.008

-0.004

0.000

0.004

0.008

0.012

NC R1 R2 R3 R4 R5 R6 CN

B3lyp

HF

Fig. 3 Variation in selected bond lenghts (see Fig. 1) of JM
ground state passing from cyclohexane to acetonitrile. HF and
DFT/B3LYP results are compared
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Fig. 4 Pictorial
representation of the neutral
and the zwitterionic
resonance forms for JM N
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Table 1 B3lyp/6-311G(d,p) vibrational frequencies (cm−1)

Gas C6H12 CH2Cl2 CH3CN

M1 1589 1585 1581 1580
M2 1604 1595 1586 1584
M3 1651 1650 1648 1647

The solvent dependence of the ground state
coordinate changes reported in Fig. 3 are qualitatively
consistent with a two-state model, pictorially repre-
sented in Fig. 4.

More specifically, as solvent polarity increases, the
ground state displays a more zwitterion-like structure:
with increasing solvent polarity and increasing
zwitterionic character, we observe an alternate positive
and negative variations of the single and of the dou-
ble bond lengths along the whole skeleton going from
the amino to the cyano nitrogen. The expected solvent
dependence of the conjugated bond lengths is easily
deduced by inspection of the resonance forms in Fig. 4.
This behavior is almost identical both at the HF and
DFT level of description. Due to this equivalence, in the
following we shall limit the ground state description to
the DFT level.

In Table 1 we report the DFT/B3LYP vibrational fre-
quencies of the modes corresponding to the region of
the RR spectrum showing the largest solvent effects (see
Fig. 1) and in Fig. 5 a pictorial view of the corresponding
normal modes.

The solvent effects on frequencies are not large. This
is especially true for the mode labelled as “mode 3 (M3)”
which corresponds to a “quinoidal” stretch of the julo-
lidine ring (stretching of the phenyl bonds). Such an
insensitivity is confirmed by experimental RRS spec-
tra. More pronounced solvent effects are found for the
other two modes (M1 and M2) for which differences of
the order of 10 and 20 cm−1, respectively, are calculated
passing from gas phase to the most polar solvent. These
differences well correlate with the differences found in
the bond lengths; for example, M2 mode for which the
largest solvent shift is obtained, can be characterized by

Fig. 5 Cartoon of normal modes corresponding to M1, M2 and
M3 vibrations of JM based on B3LYP/6-311G(d,p) calculations

a stretching of the R4 bond for which in Fig. 3 we found
the largest solvent sensitivity (together with NC).

Moving to the CT excited state geometry, the results
largely depend on the QM level of calculations.

In Fig. 6 we report the ground-to-excited state varia-
tions in the single and double bond of the JM skeleton as
obtained at CIS or TDDFT level. Note that all the values
reported in figure are obtained in both cases by consid-
ering the DFT ground state; however, almost identical
results are found by considering the HF ground state.
At TDDFT level we could not locate the excited state
minimum for the isolated system.

The inspection of Fig. 6 clearly reveals a deficiency of
TDDFT in describing ground-to-excited state structural
changes in JM. In fact, if we adopt the two-state picture
used to explain solvent effects on ground state geome-
try, also here we should expect the typical alternation
of positive and negative variations in single and dou-
ble bonds which indicate an enhanced zwitterionic char-
acter in the excited state. This alternation is correctly
reproduce by CIS but not by TDDFT. These findings
are not unexpected, as TDDFT, at least with the hybrid
B3LYP functional, has been reported to be unsuitable
for the description of charge-transfer conjugate systems
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Fig. 6 Variation in selected
bond lenghts (see Fig. 2) of
JM from ground to excited
state in gas, cyclohexane and
acetonitrile. Both CIS and
TDDFT/B3LYP are reported
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[33–35]. For this reason, in the following we will resort
only to CIS for the evaluation of RRS spectra.

3.3 Excited state displacements and RR intensities

In this section we report the results obtained for the
adimensional ground-to-excited state displacements, �j,
using the two different methodologies presented in
Sect. 2, i.e. TT which gives directly the displacements
by considering ground and excited state geometries and
ground state normal modes, and STD-IMDHO, where
instead a �j value is indirectly obtained in terms of the
gradient of the excitation energy in the FC region, i.e.
no information on the excited state minimum geometry
is required (see Eq. (7)).

The results obtained with the two theories are
reported in Tables 2 and 3, respectively. In the case of TT
the displacements have been calculated by using Eq. (3)
and taking care that both ground and excited states have
the same center of mass and their structures are oriented
so to have coincidence in the principal axes of inertia. In
the case of STD, for the evaluation of the excited state
gradients we have tested both the LR and the corrected
LR approximations (see Sect. 2.3 for more details).

The two alternative approaches, TT and STD (either
in the LR or cLR version) give qualitatively similar

Table 2 Adimensional ground-to-excited state displacements, �j,
obtained with the TT method at CIS level (using the DFT ground
state geometry) for the M1, M2 and M3 normal modes

Gas C6H12 CH2Cl2 CH3CN

M1 0.388 0.345 0.248 0.197
M2 −0.523 −0.405 −0.201 −0.142
M3 0.249 0.263 0.267 0.249

Table 3 Adimensional ground-to-excited state displacements, �j
obtained with the STD method at CIS level (using the DFT ground
state geometry)

Gas C6H12 CH2Cl2 CH3CN

LR

M1 0.412 0.397 0.302 0.252
M2 −0.538 −0.477 −0.243 −0.175
M3 0.444 0.470 0.413 0.392

cLR
M1 – 0.318 0.220 0.187
M2 – −0.335 −0.139 −0.098
M3 – 0.394 0.332 0.323

For solvated systems both the LR and the corrected LR approxi-
mations are presented

results, although they resort to different approximations
and involve completely different assumptions on the
solvation regime (equilibrium vs. nonequilibrium, see
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Fig. 7 Variations in the dipole moment of the excited state (in
debye) with respect to the three selected normal modes

Sect. 2.3). In both cases, a decrease of the displace-
ment passing from the isolated to the solvated system is
observed for all the modes, being the largest changes
found for M2. Such a behavior is in line with what
already pointed out for frequencies (see Table 1).

To support these structural data with related elec-
tronic properties, in Fig. 7 we report the value of the
variation of the excited state dipole moment with respect
to the selected normal coordinates (we recall here that
our approach relies on the assumption that frequencies,
and normal coordinates, are the same for the ground
and the excited state).

The observed trends in changing the solvent well cor-
relate with what found for the adimensional ground-
to-excited state displacements, �j: low variations (and
low solvent sensitivity) along the M3 mode and larger
variations for the other two modes with M2 presenting
the largest solvent sensitivity.

If we now compare the results obtained for both
displacements and variations of dipole moments with
experimental RR spectra (see Fig. 1), it might be con-
cluded that an opposite behavior is found for M3 for
which experiments seems to show a large sensitivity
to the solvent while very low sensitivity is found with
PCM calculations. As a matter of fact, the disagreement
between calculations and experiments is only apparent
for the reasons which follow.

In Figs. 8 and 9 simulated RRS spectra obtained by
transforming TT or STD(cLR) displacements into RRS
intensities are shown. Such intensities were obtained
by using the approximated formula (2) and (6) and by
simulating the spectrum with lorentzian band shapes. In
addition a scaling of the spectra was introduced, exactly
as done in the experiments [29]: this scaling is done so to
have approximately equal intensities of the strong line
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Fig. 8 TT resonance Raman intensities in gas and in various
solvents. All spectra have been scaled to have approximately equal
intensities in the band near 1580 cm−1
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Fig. 9 STD (cLR) resonance raman intensities in gas and in var-
ious solvents. All spectra have been scaled to have approximately
equal intensities in the band near 1580 cm−1

(corresponding to a combination of M1 and M2) in all
the solvents.

As it can be seen, the band corresponding to M3
is now largely sensitive to the solvent and it correctly
increases passing from gas to solution, and from apo-
lar to polar solvent, exactly as found in the measured
RRS spectra. Both TT and STD approaches are able
to reproduce the experimental trend, although the rel-
ative intensities of the two bands are not quantitatively
reproduced for the more polar solvents, where an over-
estimation of the intensity of the M3 band is observed.
From this analysis based on calculated RR spectra, it
thus follows that the experimentally observed sensitiv-
ity of the M3 band with the solvent is indeed a kind of an
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artifact induced by the other two adjacent bands which
both significantly decrease passing from gas-phase (or
apolar solvent) to polar solvents.

4 Conclusions

In this paper we have presented two computational
strategies to simulate resonance Raman spectra of sol-
vated molecules based on the transform theory and
short-time dynamics theory. In both strategies important
approximations have been used, however the results
obtained for the test case seem to confirm their reli-
ability, at least to get the correct qualitative picture
of the solvent effects on the position and the inten-
sity of the RR bands. These results have surely to be
confirmed on other systems before they can represent
a stated proof of the validity and the accuracy of the
theoretical methods and of the computational strate-
gies. The main important goal of this study, however,
was not the definition of a theory for resonance Raman
scattering in solution which covers all the aspects of
the solvent effects, but instead an attempt to exploit
the recent advances achieved in the QM description of
excited state properties and geometries of solvated mol-
ecules. In particular, the recent implementation of ana-
lytical gradients for time-dependent density functional
theory excitation energies seems to provide a promising
route to the geometry optimization of excited states for
larger molecules. Here, the application of the standard
TDDFT/B3LYP has shown its limits but we are sure
that the exploration of different functionals, especially
the most recent ones accounting for long-range correc-
tions [36–39] and thus most suited to properly describe
CT excited states, would lead to better results.

In any case, both TT and STD theories may be now
translated into efficient computational approaches
which can be easily applied also to larger molecular
systems and they can take into account solvent effects.
In particular, QM continuum solvation methods such
as PCM seem to represent a promising way to cou-
ple these theories with an accurate and efficient sol-
vation model. Clearly, further extensions with respect
to what presented here are not only possible but also
already initiated. The inclusion of solvent effects into
the shape of the RR band and not only on its position
and intensity, is one of these extensions. In this case,
a real time-dependent picture of the solvent polariza-
tion should be used; this type of approach has been
already presented for TD stokes shifts and other relax-
ation processes [10,40,41] and it should not be diffi-
cult to reformulate it for the present problem. Another
possible research line is the extension of PCM to the

new method which has been developed by Schatz et al.
[42] to describe the Raman scattering cross section. This
method is still based on a short-time approximation and
it makes it possible to calculate both normal Raman scat-
tering and resonance Raman scattering intensities from
the geometrical derivatives of the frequency-dependent
polarizability (real or complex). As said above, PCM
has been already extended to treat NRS by including
solvent effects in the real part of the frequency-depen-
dent polarizability (and its derivatives) [24] and thus an
extension to the complex part is surely feasible. This
should thus permit to treat RRS of solvated systems in
a more general framework without requiring any of the
strong approximations used in both TT and STD, such
as assuming only one excited state to determine the RR
spectrum.

Acknowledgment Financial support by the Italian MIUR
(Ministero dell’Istruzione, Università e Ricerca), PRIN 2005, and
by Gaussian Inc. is here acknowledged.

References

1. Myers AB (1996) Chem Rev 96:911
2. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117
3. Cammi R, Tomasi J (1995) Comput Chem 16:1449
4. Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032
5. Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B

101:10506
6. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999
7. Mennucci B (2006) Theor Chem Acc 116:31
8. Cammi R, Corni S, Mennucci B, Tomasi J (2005) J Chem Phys

122:104513
9. Corni S, Cammi R, Mennucci B, Tomasi J (2005) J Chem Phys

123:134512
10. Caricato M, Mennucci B, Tomasi J, Ingrosso F, Cammi R,

Corni S, Scalmani G (2006) J Chem Phys 124:124520
11. Cammi R, Mennucci B, Tomasi J. (2000) J Phys Chem A

104:5631
12. Scalmani G, Frisch M, Mennucci B, Tomasi J, Cammi R,

Barone V (2006) J Chem Phys 124:094107
13. Peticolas WL, Rush T III (1995) J Comput Chem 16:1261
14. Lee S-Y, Heller EJ (1979) J Chem Phys 71:4777
15. Heller EJ, Sundberg RL, Tannor D (1982) J Phys Chem

86:1822
16. Kramers HA, Heisenberg W (1925) Z Phys 31:681
17. Dirac PAM (1927) Proc R Soc Lond Ser A 114:710
18. Blazej DC, Peticolas WL (1980) J Chem Phys 72:3134
19. Chan CK Page JBJ (1983) Chem Phys 79:5234
20. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations.

McGraw-Hill:New York
21. Li B, Johnson AE, Mukamel S, Myers AB (1994) J Am Chem

Soc 116:11039
22. Neugebauer J, Hess BA (2004) J Chem Phys, 120:11564
23. Cammi R, Cappelli C, Corni S, Tomasi J (2000) J Phys Chem

A 104:9874
24. Cappelli C, Corni S, Tomasi J (2001) J Chem Phys 115:5531
25. Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002)

Phys Chem Chem Phys 4:5697



Theor Chem Acc (2007) 117:1029–1039 1039

26. Aguilar MA, Olivares Del Valle FJ, Tomasi J (1993) J Chem
Phys 98:7375

27. Cammi R, Tomasi J (1995) Int J Quant Chem Symp 29:465
28. Mennucci B, Cammi R, Tomasi J (1998) J Chem Phys 109:2798
29. Moran AM, Egolf DS, Blanchard-Desce M, Myers Kelley A

(2002) J Chem Phys 116:2542
30. Myers Kelley A. (2005) Int J Quantum Chem 104:602
31. Moran AM, Myers Kelley A, Tretiak S (2003) Chem Phys

Lett 367:293
32. Frisch MJ et al (2004) GAUSSIAN, Development Version,

Revision D.02, Gaussian, Inc., Wallingford, CT
33. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L

(1999) Mol Phys 97:859
34. Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys

119:2943

35. Bernasconi L, Sprik M, Hutter J (2003) J Chem Phys
119:12417

36. Ikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys
115:3540

37. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51
38. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004)

J Chem Phys 120:8425
39. Chiba M, Tsuneda T, Hirao K (2006) J Chem Phys 124:144106
40. Ingrosso F, Mennucci B, Tomasi J (2003) J Mol Liq 108:21
41. Caricato M, Ingrosso F, Mennucci B, Tomasi J (2005) J Chem

Phys 122:154501
42. Jensen L, Zhao LL, Autschbach J, Schatz GC (2005) J Chem

Phys 123:174110


	A quantum mechanical polarizable continuum modelfor the calculation of resonance Raman spectra in condensed phase
	Abstract 
	Introduction
	Theory for resonance Raman in solvated systems
	Transform theory
	TD theory: the short time dynamics approximation
	PCM for TT and STD descriptions
	Resonance Raman of julolidine malononitrile
	Computational details
	Ground and excited state geometries
	Excited state displacements and RR intensities
	Conclusions 
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


